skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Easley, Madeline"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this digital learning era, Augmented Reality (AR) has become a significant driver of innovative user experience. However, the ergonomic implications of AR, particularly regarding the postural fatigue dynamics, have not been comprehensively addressed. This study investigates the correlation between prolonged AR engagement and the onset of postural fatigue, characterized by a backward shift in the center of mass (COM). Employing motion capture technology alongside cognitive load assessment tools such as the NASA Task Load Index and HoloLens eye-tracking, we seek to quantify the relationship between user posture, engagement duration, and perceived workload. We hypothesize that an observable rearward displacement of COM signifies escalating fatigue levels. The methodology integrates ergonomic analysis, biomechanics, and predictive modeling. Preliminary findings indicate a decline in postural stability with increased AR exposure, reinforcing the need for ergonomics interventions. This study underscores the necessity of ergonomic consideration in the design and use of AR systems to safeguard user well-being in educational settings. 
    more » « less
  2. In this study, we explore the impact of incorporating a virtual instructor with realistic lip-syncing in an augmented reality (AR) learning environment. The study is particularly focused on understanding if this enhancement can reduce students’ mental workload and improve system usability and performance in AR learning. The research stems from previous feedback indicating that a virtual instructor without facial movements was perceived as “creepy” and “distracting.” The updated virtual instructor includes facial animations, such as blinking and synchronized lip movements, especially during lecture explanations. The study aims to determine if there are significant changes in mental workload and usability differences between the AR systems with and without the enhanced virtual instructor. The study found significant differences in the usability scores in some questions. However, there was no significant difference in the mental workload between them. 
    more » « less